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The purification and characterization of compounds resulting from parallel synthesis or combinatorial
chemistry has not yet been optimized to operate as a completely automated high-throughput process. Liquid
chromatography/mass spectroscopy (LC/MS) is most commonly employed to carry out the characterization
and identification of combinatorial compounds. This desired level of automation can only be accomplished
if the separation conditions for every compound in the combinatorial array are known prior to the analysis.
This study presents a quantitative structure retention relationship (QSRR) approach to predict the retention
time of structurally diverse solutes under 75 different LC/MS conditions. Sixty-two compounds were analyzed
using 15 commonly used HPLC columns under 5 different gradient conditions. The solute retention time
was used as the dependent variable, and more than 1000 molecular descriptors were calculated for this
compound set to generate QSRR models. After the elimination of highly correlated variables and those
with zero variance, two different genetic algorithms were applied to identify the most significant descriptors.
Following the variable selection, the identified descriptors were used to create QSRR models for each
separation condition. The calculated stepwise multiple linear regression models have been proven to be
statistically significant and highly predictive, with an average coefficient of determina®ondf 0.86, an

average cross-validated of 0.62,r2 = 0.76, and an average value of 27.29. The QSRR models can be

used to design “analysis-friendly” library purification plates, in which compounds are arranged on the basis
of their predicted separation condition and can also be used during the library design phase to flag compounds
not amenable to the separation methods in use.

Introduction calculated molecular descriptors. Because the pool of avail-

With the advent of combinatorial chemistry, high- able descriptors was large, genetic algor.ithms (GA) were
throughput synthesis methods have made it possible toused t'o select the most relevant descriptors for further
synthesize multiple compounds in parallel. Hence, follow- analysis.
up analysis methods, such as purification and characteriza- Background
tion, have been challenged to increase throughput to meet
the demands of combinatorial chemistry. To achieve the
desired degree of automation in the purification and char-
acterization of libraries, the liquid chromatography/mass
spectroscopy (LC/MS) conditions must be known prior to
the analysis. This involves significant effort in method
development to ensure the optimal conditions for each
compound. This requirement is impractical to achieve,
because there are typically a limited number of methods in
routine use at any given time. A reasonable substitute would
be to estimate which of the available methods would give
the best result for each compound in the library. Moreover
this prediction could be performed on virtual compounds,
thereby facilitating the plating of compounds for purification
and analysis.

We applied a quantitative structurestention relationship
(QSRR) analysis to relate the retention time of each of the
62 different compounds under 75 specific LC/MS separation
conditions to structural features of the compound using 1381

The developments of combinatorial chemistry and high-
throughput screening have enabled the synthesis and screen-
ing of a greater number of new chemical entities (NCESs)
than would have been possible by traditional techniques.
However, these technologies are not sufficiently mature to
allow the synthesis and screening of the googol{¥.mf
compoundsthat is estimated to exist in the virtual chemistry
space. Consequently, it is imperative to limit the chemical
space through efficient library design. Lipinski's “Rule of
five"? has been used to identify compounds with a high risk
of poor bioavailability on the basis of molecular mass,

" lipophilicity, the number of hydrogen bond donors, and
acceptors. Lipinski’'s “Rule of five” in combination with
ADME/T (adsorption, distribution, metabolism, excretion and
toxicity) filters can increase the chance to identify “drug-
like” bioactive compounds. Hence, a lot of time is invested
to select the most appropriate compound library for a
particular therapeutic area project. These compounds are then
enumerated and synthesized as combinatorial array(s). The

*To whom correspondence should be addressed. Phone: (734) 620.Synthesized products are submitted for purification by high
2357. Fax: (734) 622-2782. E-mail: sabine.schefzick@pfizer.com. performance liquid chromatography (HPLC), and the identi-
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ties of the final products are confirmed by analytical LC/ they have shown that the retention time of a solute under
MS. Unfortunately, not all of the carefully designed com- gradient reversed-phase HPLC can be determined from the
pounds will end up in the corporate compound database. Infollowing equation

practice, it is common to find attrition rates of 5@0%

within a combinatorial array due to a combination of failed tg = Ky + Kyt + kg0 a1 KiAyas 2
synthesis and loss of material during the purification and
characterization steps. whereu is the total dipole momenéi, is the electron excess

RP-HPLC, or reversed-phase high performance liquid charge of the most negatively charged atom, Apdis the
chromatography, is the most widely used purification and water-accessible molecular surface area of the solute. The
separation technique in pharmaceutical companies. Oneconstants, k, ks, andk, are related to the specific stationary
major advantage of HPLC is the possibility to analyze solutes phase and mobile phase gradient employed in the separation.
with a wide range of polarity in an automated process. Another simple quantitative structure retention time model
However, the process can only be completely automated if correlates the retention behavior with the logarithm of
the correct separation conditions are known prior to the n-octanol/water partition coefficient lo§, which can be
separation. The method development, including the selectioncalculated with a variety of computer programs with various
of HPLC stationary phase, mobile phase, gradient, etc., iserror margins.
time-consuming and would be impractical to perform for all
compounds in a library. Hence, the traditional HPLC retention parameter k; + k, log P 3)
paradigm needs to be adapted such that (a) many samples
can be processed in the shortest possible time, (b) there is Recently, Kaliszan presented a study that compared the
no interim method development, and (c) reequilibrations of |atter two approaches for predicting gradient retentfoim,
the HPLC system are kept to a minimum. The current this study, eqs 1 and 2 revealed statistically significant QSRR
approach for purification and characterization to identify models; however, Kaliszan also showed that the predictive
separation conditions is driven by the experience of the power of these models is rather limited. Thus, Kaliszan
experimentalist. A tool that could be used to rapidly predict concludes “... a suitable translation which would reveal the
the HPLC method on the basis of structural information properties encoded into the structure in a reliable manner is
would serve to guide the compound flow during the still lacking”.
purification process and allow for greater optimization,  another recent approach uses the response (retention factor
leading to higher throughput and success rates. Furthermore,og ke) to build a decision tree based on 266 molecular
it is possible to use this information during the library Fjesign descriptors (0D, 1D, and 2D) to predict the retention time
process so that compounds that would be more likely to ynqger isocratic conditions. Despite the fact that a statisti-
experien_ce_ difficulties during purification would obtain a cally relevant model with good predictive power is achieved,
lower priority. the author feels that a “... more diverse set of substances

Several approaches have been published to predict theyith more diverse retention times ...” might be needed to
solute retention behavior on a selected column. EVery effort predict the Chromatographic behavior. Therefore, the goa'
is based on the linear solvation energy relationship (LSER),  of our study is to identify a standard set of structurally diverse
also known as solvatochromic equation, which relates the Compounds a|ong W|th the most Suitab'e molecu'ar descrip_
reactivity parameter with solventolute interactions onthe  tors to predict the retention times of these solutes under 75
basis of physicochemical properties. different HPLC conditions.

Several commercially available software progréftts are
logk' =c+ IR, + s7, + aZay + B, + 0V, (1) available either to optimize the HPLC separation conditions
or to predict HPLC retention time; however, none of these

Equation 1 defines the relationship between the capacity programs was developed for rapid analysis of combinatorial
factor, k', and solute descriptors, whelRs is excess molar libraries. Therefore, the predicted retention times are typically

refraction,ng' is the solute polarizability/dipolarityx a? >5 min.
andX ﬁ.z are the solute hydrogen-bond acidity and basicity, \We employed a QSRR approach to generate statistical
andVy is the solute volume. The constamts, s, a, b, and models that are used to predict a set of reversed-phase

v are specific for the system condition employed. This gradient HPLC conditions best suited for the characterization
approach describes contributions of individual intermolecular of combinatorial compounds. A database containing all 75
interactions that are responsible for the partition behavior models is used to determine the predicted retention time of
of neutral molecules in octanelvater or reversed-phase every compound (using the solute’s QSRR descriptors) in
separation systems. The solute properties are empiricalthe library under each of the chromatographic conditions.
descriptors, which are only available for about 4000 com-  The calculated retentions of the solute under the analytical

pounds. Hence, this approach is limited to several thousandchromatographic conditions are assigned to one of three bins:
compounds and, therefore, not feasible for our study.

Baczek and Kalisz&n'® have demonstrated the prediction t < 1.5 not retained
of solute retention under a given set of linear, reversed-phase
gradient HPLC conditions by generating a quantitative
structure-retention relationship (QSRR) model. Specifically, tz > 4.5 highly retained

1.5<1tg < 4.5 moderately retained
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Table 1. List of HPLC Columns Frequently Used to Characterize Compounds

dimension particle size vendor
YMC Pro Cg 4.6 x 50 nm 3 Waters Corp.
YMC Pack Phenyl 4.6< 50 nm 3 Waters Corp.
Aquasil Gg 4.6 x 50 nm 3 Thermo Electron Cofp.
YMC Pack ODS AQ Gg 4.6 x 50 nm 3 Waters Corp.
Res.Sys. Hydropore @ 4.6 x 50 nm 3 Resolution Systefms
MetaChem Polaris (g 4.6 x 50 nm 3 MetaChefn
Xterra MS G 4.6 x 50 nm 3.5 Waters Corp.
Xterra MS Gg 4.6 x 50 nm 3.5 Waters Corp.
Waters Symmetry ¢ 4.6 x 50 nm 3.5 Waters Corp.
Alltima Cqg 4.6 x 50 nm 3 Alltech Associates,lrfc.
Polymer Laboratories PLRP S 4:650 nm 5 Polymer Laboratories Lid.
Phenomenex Prodigy Phenyl 4650 nm 3 Phenomenex Iric.
Phenomenex SYNERGI MAX RP¢ 4.6 x 50 nm 4 Phenomenex Ifc.
Phenomenex SYNERGI Polar RP 4650 nm 4 Phenomenex Ifc.
Phenomenex Lunag) 4.6x 50 nm 3 Phenomenex Ific.

aSee ref 24P See ref 25¢ See ref 269 See ref 27¢ See ref 28f See ref 299 See ref 30.

Table 2. Physicochemical Properties of the HPLC Columns Used in This Study
surface area  pore size pore volume C content bonded phase coverage

(m?/g) (A) (mL/g) (%) (mmol/n?)

YMC Pro Cg 335 120 1.06 16 25
YMC Pack Phenyl 300 120 1.0 9 3.2
Aquasil Gg 310 100 0.9 12 1.8
YMC Pack ODS AQ Gg 300 120 1.0 14 2.2
Res.Sys. Hydropore @ 300 120 1.0 15 NA
MetaChem Polaris (g 200 200 1.0 NA NA
Xterra MS G 175 125 0.7 12 2.3
Xterra MS Gg 175 125 0.7 155 2.2
Waters Symmetry ¢ 340 100 0.9 19.1 3.2
Alltima Cyg 340 100 NA 16 NA
Polymer Laboratories PLRP S NA NA NA NA NA
Phenomenex Prodigy Phenyl 450 100 1.06 10 NA
Phenomenex SYNERGI MAX RP ¢ 475 80 1.05 15 NA
Phenomenex SYNERGI Polar RP 475 80 1.05 11 NA
Phenomenex Lunag?) 400 100 NA 135 5.5

A chromatographic method that yields moderate retention QSRR models. Therefore, we selected a standard solute
for a solute receives a score of 1 for that solute. Otherwise, dataset to be analyzed under specific HPLC conditions that
the chromatographic method receives a score of 0 for thatwould likely be used for high-throughput characterization
solute. The chromatographic method with the highest scorein our labs. These conditions were chosen in collaboration
for all solutes in the virtual library is selected as the with the experimentalist.
recommended analytical method for the library. A similar ~ HPLC Columns. Cluster analysis of the chromatographic
approach is applied to recommend a preparative chromato-conditions used in the analytical characterization of combi-
graphic method for library purification. In this case, analytical natorial libraries over the past several years revealed that
HPLC columns with the same stationary phase and lengthsthe majority of the characterization is performed on ap-
as the preparative HPLC columns are used to obtain theproximately 15 columns (listed below). These 15 HPLC
retention time information. The retention time of the solute columns are listed in Table 1 together with some of their
under preparative HPLC condition is proportional to the physicochemical properties (Table 2). All HPLC columns
retention time of the solute under analytical HPLC conditions used in this study were newly purchased.
and the flow rates of the mobile phase and indirectly HPLC Gradients. For the purpose of this analysis, we
proportional to the square of the column diameters. limited the analytical HPLC conditions to five linear gradient

However, in this study we will focus our efforts on programs listed below. Formic acid (1%) was added as a
predicting the solute’s retention behavior exclusively for modifier to the aqueous as well as the organic mobile phase.
analytical HPLC conditions, which are implemented in the Acetonitrile was chosen as organic mobile phase, since this
characterization process of combinatorial compounds. is the preferred organic phase in-house. Each of these 5
gradients was used in each of the 15 HPLC columns for a
total of 75 experiments for every compound in this study.

10% CHCN — 100% CHCN, 5 min

Because the selection of the best HPLC conditions fora 10% CHCN — 50% CHCN, 5 min
given compound can be subjective, on the basis of the 50% CHCN — 100% CHCN, 5 min
experience and knowledge of the analytical chemist, we 30% CHCN — 70% CHCN, 5 min
declined to use preexisting analytical data to generate our 20% CHCN — 80% CHCN, 5 min

Experimental Section
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Equipment. The chromatographic data were obtained The average retention times, obtained from these experi-
using an Alliance HT Waters 2795 LC/MS apparatus, which ments, were used as the dependent variable to generate the
is equipped with a pump, a variable-wavelength -tiis QSRR models. The retention times were manually deter-
detector (Waters 996 Photodiodes Array Detector), autosam-mined from the chromatograms. The peak’s shape and its
pler and thermostat. The mass spectrometer (Micromassinfluences (e.g., DMSO) were not considered in this study.
ZMD 2000) used for this study was a z-spray mass detector Molecular Descriptors of Solutes.Initially, 2419 descrip-
equipped with a single quadruple mass analyzer and APltors were calculated using the geometry-optimized 3-D
interface (electrospray & APCI). Data were collected and molecular structures.
processed using MassLynx 3.5, which is distributed by = MMFF94% force field, embedded in SYBYL 6.9, was used
Micromass, Ltd. to generate the optimized 3D conformation. The same force

Chemicals and SolutesChromAR water; acetonitrile; and ~ field was used to compute partial charges. Table 4 sum-
formic acid, 88%, AR (ACS) were purchased from Mallinck- marizes the molecular modeling software and the descriptors
rodt Laboratory Chemicals. generated for this analysis.

Of the 62 compounds used in this study, 48 compounds
(structures not shown) were obtained from Pfizer's compound ] . i
database, and 14 compounds (Table 3) were purchased from Genetic Algorithm and Data Analysis. For each HPLC
Sigma-Aldrich. The following test solutes were obtained Method, the average retention time of every successfully
from Sigma Aldrich: [5-(2a,3b,8ab)]-¢)-hexahydro-3-  Separated solute was combined with the available set of
(hydroxymethyl)-8a-methyl-2-phenykboxazolo[3,2-aJpy- ~ descriptors. Itis important to point out that it was not possible
ridin-5-on, 4,5-diphenylimidazole, 4-hydroxy-2,5-diphenyl- {0 retrieve retention times for all 62 solutes under all 75
3-thiophenone 1,1-dioxide, 4-hydroxy-8-{minobenzyl)-1- HPLC conditions. Because of variability in early and late
methyl-6-phenylpyridin-2(&#)-one,  4-isobutyk-methyl- elution of solutes for each chromatographic analysis, our
phenylacetic acid, 6-hydroxy-1,3-benzoxathiol-2-on, 7-hy- datasets include-43 observations for each method used.
droxy-4-coumarinylacetic acid, 8-methoxypsoralen, furoin, With thatin mind, it was important to perform the collinearity
gramine, hydrocortisone, prednisolone, reserpine, and sul-2nd zero variance checking at this point because the datasets
fadiazine. The concentrations of the solutes in the standardfor €ach method no longer include the identical number (or
solution varied from 1.5 to 2.0 mg/mL. The sample solutions COMPOSition) of observations. After the removal of descrip-
contained three or four compounds. The solutes were ors with a collinearity>90% and zero variance variables,
dissolved in 1:1 v/v % CKCN/H,0 solution. Since itis well- ~ ~650 descriptors remained in the data set. Prior to the
known that DMSO (dimethyl sulfoxide) influences the peak application of genetic algorithm as variable selection tool,
shape, addition of DMSO was avoided as much as possible [he data sets were normalized using the BoxCoxAuto

It was our intent to work with a solute set that is technique |n_Partek1,wh|c_h is a power trans_,formatlon _tooI_
representative of druglike compounds that shows histogramthat automatically determines the most feasible normalization

plots of Lipinski’'s Rule of 5 descriptors as well as the number algorith?];f ic algorith d 1
of rotatable bonds and polar surface area descriptors. All Two di .erent genepc agorl't ms (GAS) were used for
compounds used in this study fell within “druglike” bound- further variable selection. The first genetic algorithm utilized

aries (MW < 500, ClogP< 5, hydrogen bond acceptors a feature selection tool available through Partek. The other
10, hydrogen bond donors 5) with a distribution covering gene_tic glgorithr_n applied was th_e gesnetic function ap-
a wide range of chemical space within the Lipinski guide- proximation available thrOL:ghl Cedrluééh‘.‘ In bOtlh _casefs,

lines. In addition, to further characterize that the diversity 10 000 generations were calculated with a population of 100.

of our solute set was representative of chemical space likely | '€ mutation prol::cabll;lty v(\j/als setr:o ?gg All .e\t/)cl)lvedFllneir
to be encountered with a typical combinatorial library, equations were of a fixed length o variables. For the

pairwise tanimoto coefficientd{) were used to analyze the GFA in Cerius2, the initial equation length was set to 10.
relative molecular diversity of the data set. Tanimoto Because Qf the randgm nature of these algorithms, each GA
coefficients and the averade value were calculated using was a_\pplled three times to each dataset. The three best
the daylight fingerprints. The calculated averaged tanimoto equations per GA_ were selected, and each plescnptor was
coefficient for 64 compounds used in the standard solute Setranke_d on the basis of the frequency of selection by the GA
used in this study was 0.19 0.20, indicating a high level (max_lmum sc04re= 3)- .

of diversity within the data set. For comparison, the MDDR ~ USing JMP:* all 150 GA results (two different GAs
(MDL drug data report) database was used as a referencePPlied to 75 data tables) were combined using the sum-

database. For 81 796 MDDR compounds with a molecular rank fusion methott*7 (eq 4). HereR(x) symbolizes the
weight between 100 and 600 and rotatable bonds, the rank position of the descriptorfor a specific HPLC method
pairwise tanimoto coefficient was 0.29 0.27 ’ i, and N is the number of different HPLC methods The

Determination of the Retention Parameter for the descriptors with the highest SUMalue were considered

OSRR Studies.Each solute in the standard set was chro- the m_ost significant descriptors for predicting the solutes
. retention.

matographed three times on each of the 15 columns under

the five gradient conditions. All chromatographic measure- N

ments were performed at 2ZC with a mobile phase flow SUM, =} R(X (4)

rate of 1 mL/min. The injected sample volume was;20 =

Result and Discussion
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Table 3. Structures Obtained from Sigma-Aldrich

Schefzick et al.

Structure

Name

[2S-(2a,3b,8ab)]-(+)-Hexahydro-3-
(hydroxymethyl)-8a-methyl-2-
phenyl-5H-oxazolo[3,2-a]pyridin-5-
one

4,5-Diphenylimidazole

4-Hydroxy-2,5-diphenyl-3-
thiophenone 1,1-dioxide

4-Hydroxy-3-(a-iminobenzyl)-1-
methyl-6-phenylpyridin-2(1H)-one

4-Isobutyl-a-methylphenylacetic acid

6-Hydroxy-1,3-benzoxathiol-2-on

7-Hydroxy-4-coumarinylacetic acid

8-Methoxypsoralen

Furoin

Gramine

Hydrocortisone

Prednisolone

Reserpine

Sulfadiazine

Sigma Aldrich
Catalogue No.

38,811-4

D20,860-4

34,357-9

25,033-3

28,474-2

21,707-7

33,566-5

23,272-6

19,265-1

G1,080-6

28,609-5

28,698-2

RO875 (Sigma)

28,719-9
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Table 4. List of Calculated Descriptors
no. of descriptors software description of descriptors

1496 Drago# 2D autocorrelations descriptors, 3D-MoRSE descriptors, BCUT

descriptors, GETAWAY descriptors, Galvez topological charge indices,
RDF descriptors, Randic molecular profiles, WHIM descriptors,
aromaticity indices, atom-centered fragments, charge descriptors,
constitutional descriptors, empirical descriptors, functional group
counts, geometrical descriptors, molecular walk counts, properties,
topological descriptors

199 MOE?3 physical properties, subdivided surface areas atom counts and bond
counts, Kier & Hall connectivity and kappa shape indices, adjacency
and distance matrix descriptors, pharmacophore feature descriptors,
partial charge descriptors, potential energy descriptors, surface area,
volume and shape descriptors, conformation dependent charge descriptors

36 Qikprop* 2D, 3D descriptors and pharmaceutically relevant properties of organic

molecules, e.g., agueous solubility (log S), brain/blood partition
coefficient (log BB), CNS activity

50 HiVol3%SybyP® 2D and 3D descriptors, topology descriptors, dipole moment
401 Molconn2? molecular connectivity, shape, and information indices
88 Volsurf® 2D molecular descriptors derived from 3D molecular interaction energy
grid maps
142 TSAR?® molecular attributes, number of connectivity, shape, topology, and

electrotopology indices, counts of atoms, rings, groups, and H-bond
donors and acceptors, electrostatic calculations
17 webpKkO in-house program
2419 total

Table 5. List of the 20 Most Frequently Selected Descriptors by Genetic Algorithm

descriptors description frequency count % selected

#amine number of nonconjugated amine (QikProp) 150 33.33

CLogP Biobyte’s log P (Sybyl6.9) 127 28.22

nNHRPh number of secondary amines (aromatic) 100 22.22
(Dragon)

vsa_other approximation to the sum of VDW surface 52 11.56
areas of atoms typed as “other” (MOE)

Atype_N_68 AlogP N in:AI3N (Cerius2) 49 10.89

DCASA absolute value of the difference between CASA a7 10.44

(positive charge weighted surface area, ASA
times max{ gi > 0}) and CASA- (MOE)

C-027 response to-RCH—X, Ghose-Crippen atom 45 10.00
centered fragment (Dragon)

donors HIVol donor (Sybyl6.9) 36 8.00

DASA absolute value of the difference between ASA 35 7.78

(water-accessible surface area of all atoms with
positive partial charge (strictly 0)) and ASA-

(MOE)
QplogKp predicted skin permeability (QikProp) 35 7.78
FASA+ fractional ASA+ calculated as ASA/ASA (MOE) 34 7.56
PDsol (mcg/mL) aqueous solubility (webPK) 34 7.56
Group_count_for__chain_c=n group_count_for__chain_c=n (TSAR) 33 7.33
nCOOHPH number of carboxylic acids (aromatic) (Dragon) 33 7.33
H8m H autocorrelation of lag 8/weighted by atomic 31 6.89
masses GETAWAY (dragon)
HATS3u leverage-weighted autocorrelation of 31 6.89
lag3/unweighted GETAWAY (Dragon)
estate_sCH3 estate for Cklgroup (Sybyl 6.9) 30 6.67
Group_count_for_Phenyl group_count_for_Phenyl (TSAR) 29 6.44
CLogP_error biobyte’s log P (Sybyl6.9) 29 6.44
SlogP_VSA9 sum ofy; such that; > 0.40 (MOE) 28 6.22

Significant Descriptors. Table 5 lists the 20 most be neutral. Therefore, it makes sense that the number of
frequently selected descriptors. Many of the selected descrip-amines (#amine) and aromatic amineNiHRPh) impact the
tors represent molecular parameters that are known toprediction behavior more than the number of carboxylic acids
influence the separation in RP HPLC. For example, it is well- (hCOOHPh).
known that the ionization state (neutral or charged) of a Likewise, it is not surprising that ClogP was selected as a
compound will affect the retention behavior of the solute. significant variable since the partitioning of a compound
Moreover, under the HPLC conditions used in this study, between liquid aqueous and organic phases is related to the
amines will be charged, whereas the carboxylic group will solute’s partition equilibrium between mobile and stationary
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phase. Particular, the nitrogen in aliphatic substructures isTable 6. Averaged Stepwise Multiple Linear Regression

of importance, because the AlogP of nitrogen ¢{MFe is Results Obtained from the Most Predictive Test and Training
ranked as the fourth most important descriptor identified by Set per HPLC Condition

the GAs. In addition, we observed a relevant contribution test sets training sets

of different water-accessible surface descriptors (DCASA, R?/r2 0.863 0.762

DASA, FASA+), which is in agreement with the results of q? 0.621

Baczek et al*s who found that a water-accessible molecular F 27.29

surface area descriptor, calculated in Hyper-Cube, also H:er 3:88 33‘2?

showed a significant contribution in their QSRR studies.

The retention behavior of solutes was originallyldescr_ibed different training sets, each including 80% of the original
by eq 1. T.WO qf the four terms describe the relat|onsh|p.of dataset. The remaining 20% of the original datasets were
the re.t(.annon time of a solute and the hydrog.en bonding used to estimate the predictability of the generated QSRR
capablllty of the solute. Hydrogen bond prqpernes can also models. For each training set, a stepwise regression model
be described b_y the_nump_er of donor atoms in the Compound,was constructed using the procedure described above.
another descriptor identified by the GAs. The last term of Afterward, these QSRR equations were used to predict
Abraham's equation is the cavity term, which is relatt_ad © the retention time for observations included in test set.
the energy necessary to form a cavity for the solute in the Golbraikh et aP152 suggested that QSRR models are only
solvent. This term is dependent on the volume of the solute. acceptable if thep is >0.5 and the predictive? is >0.6
Th|s|depend%ncy 'S de_schrlbed using ?QEOT’SW@?WG”Y’ Moreover, the square of the correlation coeffici@atmust
topology, andatom-weights assemby)™* descriptors, in be close tdRy?, the square of the correlation coefficient for

wh|ch two of these dESCI’I.DIOI’S. (HATS3U, H8m)_SIgn|f|cantly a regression with 0 intercept. The slope of the regression
contribute to the retention time. Both descriptors reveal

information about size and shape of the molecules. (HATS3u
and H8m belong to the H-GETAWAY descriptors, in which 150 ¢ jists the average results for all 75 datasets. The

the molecular influence matrix and especially the diagonal model with the besR? (best predictably) found for each

Elements of this m_atrix fle USEd oaatemine spec_ific size dataset was used to identify the best predictive QSRR model
and she}pe propgrtles.) HATS3U and H8m are.spe}t|a| auto-¢5 5 specific HPLC condition. The average predictability
correlation descriptors, which summarize contributions of a of all 75 QSRR models is quite good, withR& = 0.86. A

specific path length (lag) in the molecular graph. Overall,
all descriptors selected by the genetic algorithm can be

phys!cally explained, which is somgwhat SUrprising, Con- ¢ ype statistical parameters for QSRR models of the training
S|der|n_9 the large number of des_crlptors av_a|lable for the sets, whereas Figure 3 represents the distribution of QSRR
analys_ls and the con5|derable_ Va”"?‘b'e reduc_t|on afforded bYgiatistics for the test sets. The average number of descriptors
removing the correlated and invariant descriptors. for all models was 7.4. It can be seen in Figure 3 fa

Stepwise Multiple Linear Regression After identifying >0.6 for the majority of QSRR models (71 out of 75), and
a suitable subset of variables, stepwise multiple linear o models haveR2 between 0.5 and 0.6.

regression was chosen to generate QSRR equations for all Tyq additional QSRR models, both from the anticipated
HPLC conditions tested. Stepwise multiple linear regression aAquasil HPLC column, are not predictive for the test set
produces a multi_ple-term linear equation; however_, not all compounds. It is not surprising that the Aquasil C18
independent variables are used. Step-by-step variables argyperiments were poorly predicted. A frequency table (Table
added to the equation, and a new regression is performed. lfg) jndicates that only 6 of 20 variables chosen by the GAs
the new variable contributes significantly to the regression are important for this particular column. This implies that
equation, the variable is retained; otherwise, the variable is ihjs stationary phase must have physicochemical properties
excluded, hence preventing overfitting. Stepwise multiple giferent from all the other columns. Moreover, it can be
linear regressions were performed in the QSAR module of ghserved from Figure 3 that the linear regression between
Cerius2. All 20 variables were used to generate stepwisegpserved and predicted retention time shows an average
regression equations (parameters: forward search, 100 maxsjope k, of 1.07 and an average intercept of 0.04. The square
stepsF value 2.00) for all HPLC conditions. A Cerius2 script  of the correlation coefficient for a linear regression though
was used to generate and export all the regression equationgne origin Ry2 = 0.76) is close to the square of the correlation
During the following discussion of the generated QSRR coefficient R? = 0.86, which indicates statistically stable
models, we will refer ta? as the square of the correlation models. The predictability of the QSRR models is evaluated
coefficient obtained from the stepwise multiple linear regres- by identifying the square of the correlation coefficieRg,
sion in the training set and t@? as the leave-one-out. of the observed versus the predicted retention time for a set
Alternatively, we will refer toR? as the square of the of compounds that were not used to generate the QSRR
correlation coefficient in the test set, estimating the predictive models.
ability of the generate QSRR models. Figure 4 shows the actual versus predicted plots of the
Twelve different training and test sets of each data table test set compounds for the models with the best and poorest
were used to evaluate the predictive power of the QSRR predictive ability. The corresponding predicted and actual
models. All 75 datasets were randomly divided into 12 retention time values for these compounds are listed in

models is also identified as a critical factor and should take
values close to 1.0.

pictorial presentation of the distribution of the statistical
results is depicted in Figure 2. Figure 2 shows the distribution
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Figure 1. lllustration of the structural diversity in the standard solute set.
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Figure 2. Statistical result from the stepwise multiple linear regressions for the most predictive QSRR model for each HPLC condition
experiments ré symbolizes the square of the correlation coeffici¢éhialue indicates a “signal-to-noise” ratig? stands for a LOQ?,
NObs is an abbreviation for the number of observation, and NVars the number of variables).

Table 7. Since the structures of some compounds are notversus test set compounds in the model with bad predict-
disclosed, we looked for any differences in the descriptors ability. In general, the values for the descriptors are in the
for test set compounds in the models with good predictability same range. The only differences we are able to point out is
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Figure 3. Statistical results of observed versus predicted linear regression for the most predictive QSRR model used as a measure for the
predictability.

Table 7. Normalized Observed and Predicted Retention Time Values for the Best and Worse Predictive QSRR Model

best predictive model worse predictive model
compd observed RT predicted RT observed RT predicted RT

Pfizer 1 0.95 0.58
Pfizer 2 1.18 0.54
Pfizer 3 —0.62 0.48
Pfizer 4 —1.38 0.38
Pfizer 5 —-1.82 -0.13
Pfizer 6 —1.87 -1.61 —1.43 —0.38
Reserpine —0.20 —0.13 0.67 —0.01
Pfizer 7 —1.85 —-1.57
7-Hydroxy-4-coumarinylacetic acid —0.76 -0.31
Pfizer 8 —0.40 —0.30
Pfizer 9 0.19 0.47
Pfizer 10 0.47 0.57
Pfizer 11 0.75 0.85
Pfizer 12 1.74 1.65

that the randomly selected test compounds in the data setSymmetry Gsg with a 10-100% CHCN gradient. As
with good predictably have twice the number of hydrogen expected, the type of packing material in the HPLC column
bond donor atoms and only half of the average value of influences the quality of the QSRR. Conversely, the mobile
descriptors DCASA and DASA. These findings might phase gradient seems to have no significant influence on the
indicate that the ratio of positive versus negative charged QSRR model (Figure 5). However, the average predictability
surface areas is slightly smaller for compounds in the good for QSRR models using a mobile phase gradient of 10
predictive model. 50% CHCN and 36-70% CHCN are below the grand mean
The worst predictive model is the QSRR model for of the average square of the correlation coefficid®f).(
experiment 14, in which the Aquasil HPLC column was  To verify that all of the variables were making a significant
combined with a 3670% CHCN gradient. The QSRR  contribution to the model (i.e., no single descriptor was
model with the best predictability can be used to predict the overwhelming the model), we regenerated each model,
retention time of new solutes separated on the Watersleaving out each descriptor in turn. The averagédalue
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Table 8. Averagedr? and Cross-Validated? Values for we took the ratio of the number of standard deviations of
Five Different Randomized Datasgts the mean value of the correlation coefficient of all random
r2 P trials to the nonrandom correlation coefficient value. The
original dataset 0.762 0.621 larger this number, the greater the likelihood that the model
randomized dataset 1 0.225 0.077 generated with nonrandom data represents a true relationship
randomized dataset 2 0.222 0.074 between the data variables and activity. The mean value for
randomized dataset 3 0.242 0.088 this ratio (automatically generated in the Cerius2 software)
randomized dataset 4 0.242 0.069 S
randomized dataset 5 0.215 0.065 was 3.44, considering all 75 QSRR models. The averaged

r? andg? values for the randomized data sets were 0229
.02 and 0.074 0.01, whereas the? andg? values for the
original data set were? = 0.784 andy? = 0.678 (Table 8).

aFor the sake of comparison, the same statistical measures ar
listed for the original data sets.

150, Y=1 :23:(1))(3-3367551 . 2,00 ; y=1.0899x - 0.1693
g 0% . ¢ g o] T Conclusion
0.00 0.50 . .
E 050 R § - In this study, we successfully provided QSRR models for
s e . § 1% 75 different HPLC experiments (5 gradients for each of 15
-2.00 4 . , -2.00 ] different columns) that predict the retention time for a given

-0.50 0.00 0.50 -2.00 0.00 2.00
Predicted RT Predicted RT

standard solute set under all the different HPLC conditions
Figure 4. Plot 1 illustrates the observed versus the predicted tested. Over 2000 descr!ptors were cqlculated_ for each of
retention time for the worse data set. Plot 2 depicts the observedthe solutes, .and . two fogrent Qe”?_t'c algor!thms yvere
versus the predicted retention time for the best data set. deployed to identify statistically significant variables in a

huge pool of descriptors. Using a fusion method, the results
obtained from these models indicates that the models areof the GAs were combined, and the 20 best overall variables
extremely stablecf = 0.623+ 0.01); no single variable is  were identified for all HPLC methods. Afterward, these 20
dominant. To further validate that the models generated werevariables were used as starting points to generate QSRR
not statistical anomalies, we randomized each data set bymodels for all HPLC conditions using stepwise linear
scrambling the dependent variable for each observation. Thisregression. Overall, it was possible to generate 71 of 75
randomization procedure should yield models with little or statistically significant and predictive QSRR models, with
no statistical significance. To measure the randomization, an average? = 0.76 andg? = 0.62. Work is currently
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